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Correlated bond percolation on the Bethe lattice 

S Cusack 
Department of Physics, Imperial College, London SW7 2BZ, UK 

Received 11 March 1976 

Abstract. A non-linear integral equation is derived for the percolation probability of the 
correlated bond percolation problem on the Bethe lattice. Analysis of the integral equation 
yields exact results for the critical percolation probability and the behaviour in the critical 
region. 

1. Introduction 
The exact solution to the random bond percolation problem on the Bethe lattice was 
first given by Fisher and Essam (1961). If the probability of a bond being present is p,  
then percolation (i.e. the existence of infinite chains of bonds) sets in for p > pc, where 
pc= l/a for a Bethe lattice of coordination number a+ 1. Here we consider the 
solution to the correlated bond problem which was abstracted by Kirkpatrick (1973) 
from models of hopping conduction between localized states in semiconductors (Miller 
and Abrahams 1960, Ambegaokar et a1 1971). In this problem, the probability that a 
bond connects two neighbouring sites of a lattice is no longer independent of the 
existence of other bonds leaving the sites. 

2. The correlated bond model 

The problem is as follows. Each site i of a Bethe lattice of coordination number a + 1 is 
associated with a random variable Ei which is uniformly distributed on [-1, 11. A bond 
joins neighbouring sites i and j provided 

E.. 11 = ~ ( I E ~  1 + 1~~ 1 + I E ~  - ~ ~ 1 )  s E (1) 
where 0 < E d 1. What is the percolation probability (the probability that a given site is 
Part of an infinite chain of sites linked by bonds) as a function of E? 

It is helpful to illustrate the values of Ei, Ej (shown shaded in figure 1) which imply a 
bond between two neighbouring sites i and j (the diagram is for E < i). Only sites with 
IEi(42E can have bonds from them. We note immediately that the probability p that 
two neighbouring sites are joined by a bond irrespective of any other connections is 
WKd to the shaded area divided by the total area of the square of allowed values of Ei 
and Ej, 

lfthere were no correlations between bonds, the critical percolation probability would 
%erefore be l/c and for a> 1 

p = 12E2/4 = 3E2 Ea;. (2) 

E, = 1 / ( 3 ~ ) ” ~ .  (3) 
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E ,  

-1 

Flgm 1. Neighbouring sites i and j have a bond joining them provided (E, .Ei) is in the 
shaded regon. 

However correlations of a form which tend to cluster bonds together do exist. If a site i 
has a bond entering it, then lEil d 2E. Therefore the probability that i is also connected 
to a second neighbouring site is $E. A better estimate of the percolation threshold is 
given when this probability is equal to l/u which would imply 

E, = 2 1 3 ~ .  (4) 

This condition is simply saying that for percolation to occur, a site which has a bond 
entering it must have open on average at least one of the c other bonds leaving it. It will 
be seen that the exact E, is only slightly less than this estimate. 

3. Percolation probability 
We now show how to obtain the percolation probability, P(E), for the correlated bond 
model on the Bethe lattice. The method is analogous to that used by Essam (1972) to 
discuss random bond percolation. 

Suppose the central site has associated parameter Eo. Since the u+1 branches 
leaving this site are independent of each other if Eo is fixed, we may write 

Here, QE(Eo) is the probability that no infinite chain leaves a site with parameter EO 
along a particular branch. The 4 arises from the uniform probability distribution of EO 
on [-1,1]. 

Let &(Ei, Ej> = 1 - ~ E ( E , ,  Ej) be the probability that a bond connects neighbouring 
sites with parameters Eo, Ei. From (l), 

Ej) = B(E-Eij). (6) 

It is now apparent that QE(Eo) satisfies the following non-linear integral equation: 
1 

QECEO)=~ I ~.E(Eo, Ei) dEi +f PE(&, EiIQgEi) dEi. (7) 
-1 
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In (7) the first term is the probability that the bond in a given direction leaving EO is 
absent. The second term is the probability that this bond is present but that the U 
remaining branches leaving Ei are all dead ends. 

QE(E0) = 1 is always a solution of (7). However, we expect that there exists an E, 
such that for E > E, there is another solution with &(EO) < 1 (provided /EO] =s 2E) 
indicating that percolation can take place with a non-zero probability. From the 
discussion above, we expect E,<; (for U > 1) and all following expressions are only 
valid for E d i. 

With the help of figure 1 and noting that &(Eo) is even in Eo, (7) may be written 
2E 2.5 

1-2E+$Eo+L QE(Ei)dEi-;l QE(Ei)dEi 0 d Eo d 2E 
(8) 2E-Eo 

Eo>2E 

1 1 

11 
QE@O) = 

k t  &(a) = 1 - &(&/2E), then for S 1 

X E ( ( Y )  = 2E [l-(1 - x ~ ( t ) ) ~ ]  dt -E [l-(1- xE(t))u]  dt. (9) % l-a 

It follows from (9) that 
(i) xE(a) = 0 is a solution of (9). 
(ii) Any non-zero solution of (9) is a monotonic decreasing function of a, since 

dXE(a)/da < 0. 
(id) xE(o)=2xE(1). 

From (ii) and (iii) it follows that E, is a well defined quantity in the sense that considered 
as a function of E for fixed a, the second solution required is such that xE(a)-,0 as 
E+E,' for all a. We therefore make the ansatz 

xE((Y)-Sy(Y(a)+Sz((Y)+. . .). (10) 
HereS=E-E,and 

y(a) = S+O lim+ x E ( a ) / S y  # 0. (1 1) 

The exponent v will later be shown to be 1. Substituting (10) in (9) gives a linear integral 
equation for y(a): 

It is easily seen that y (a) satisfies the second-order differential equation 

where X = Eta. The solution is of the form 

d2y(a)/da2= - X 2 y ( ~ )  

y(a) = A sin Xa +B cos Xa. 

Substituting back in (12) we find 

y(a) =  cos x a  -$sin xa) 

where C is a non-zero constant and X must satisfy the condition 

(1 -sin X)/COS x = $. 
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The relevant soiution of (16) gives for the percolation threshold 

E, = sin-'~)/u=O~6435/~. (17) 

This exact result is to be compared with the value EC=2/3a  obtained by simple 
arguments in 0 1. The small difference arises when detailed account is taken of the 
variation with Ei of the conditional probability that further bonds leave a site i given 
that a bond enters i. 

To obtain the exponent v and the constant C it is necessary to make use of the 
non-linearity of (9). This may be done by solving for the next order term in the 
expansion (10). The function z (a)  may be shown to satisfy the equation 

where the term in y2(t) is only included if Y = 1. This equation may again be converted 
into a differential equation but it turns out that only if v = 1 can a solution be found to 
(18). Inthiscase 

z(a) = Dy(a) - U(& -$)y(l -a) +&(a - 1)c2 -$(a - l)y(a)(y(l -a) +$y(.)) (19) 

provided 

15 U C=-- 
4 a-1' 

D is a constant undetermined to this order. 
The critical behaviour of the percolation probability can now be obtained from (5): 

15 a+l 
4 a-1 

P(E)  -- -(E-&) + O(E -E,)2. 

Figure 2 shows the form of P(E) for CT = 4. 

E 

2. The percolation probability P(E) for the correlated bond model on the Bethe 
lattice of coordination number a+ 1 .= 5. The percolation threshold is at E = 0.1609. 
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4. Condosion 

ne solution of the correlated bond percolation problem on the Bethe lattice has been 
presented. The exact percolation threshold is given by equation (17) and the percola- 
tion probability is found to behave linearly in the critical region. it is intended to extend 
thiswork to the treatment of the electrical conductivity of a correlated resistor network. 
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